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FINAL REEORT

This is the final report of a study of special computing machinery

for computations on sparse matrices, under contract with the Office of

Naval Research N0001h-79-C-0477

The elements of the computing system and its application to Gaussian

elimination are described in some detail in the paper "On a Special

Purpose Matrix Array-Processor" by Philip N. Armstrong and David G. Cantor,

which has been submitted for publication and comprises the major part of

this report. This paper describes the system and the algorithms for which

it is designed, so that a reader who is acquainted with computations on

matrices will understand the system's utility for such computations.

Some additional remarks regarding selected matrix computations may be

useful and are included here, although what is written below may be

inferred from the substance of the paper. Reading the paper is a pre-

requisite for these remarks.

1. Matrix transformations of a vector: computing Ax and A Tx.

Assume that A is an n x n matrix and that column a of A is

stored in module M., i.e. A is treated as though it were dense. If
.~~~th cmuaino

the j element of x is in processor P., module M, computation of

either Ax or ATx will require n ticks. More generally, if A has

m rows and n columns, stored in the above manner, max(m,n) ticks will

be required.

2. Forward and back substitution: y = L 'b and x = U'1 y.

Suppose L is an n x n lower triangular matrix, U is an upper

triangular matrix, and b is a vector with n components. The computa-
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tions L'Ib and U'ly will each require n ticks. The n2  entries of

L must be accessible in order of increasing row indices; the entires of U

must be accessible in order of decreasing row indices.

3. Solving the system Ax = b, where A is an n x n invertible matrix.

The entries of x may be obtained by Gaussian elimination with

partial pivoting in n + 3n ticks, assuming fill-in does not exceed

the memory capacity of the system. After the first n2 ticks, the vector

Pb may be stored, where P is the permutation matrix defined by the

partial pivoting operations, so that in n2 + n ticks the LU form will

be completed and the n components of Pb will be in place. The systems

Ly = Pb and Ux = y may then be solved in the following 2n ticks. This

amount of time may be decreased if A is sparse. For details, see page 20

of the paper.

4. Updating the LU form of an n x n matrix.

Suppose the LU form of a matrix has been obtained by Gaussian elimi-

nation with partial pivoting, using the array-processor. Then suppose

the matrix A is changed to a new matrix A by the exchange of a column

a . for a new column a *. This is the "pivot step" of the Simplex algo-

rithm for linear programming, as described in the paper "Numerical

Techniques in Mathematical Programming" by R.H. Bartels, G.H. Golub, and

M.A. Saunders, in the book Nonlinear Programming, Academic Press, New York,

1970. This computation requires no more than 5n - j + 1 ticks, using

the method described in the paper. In this method, an upper Hessenberg

matrix is reduced to its LU form and the elements of the lower triangular

md
matrix which is produced are stored, using no more storage than that

'1
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allocated for one column of the original matrix A. Similar computations

will produce matrices factored in this way with new column interchanges.

With each subsequent decomposition, the storage will be similarly

increased, and the amount of time consumed by the procedure will increase

by one tick. Periodically, recomputation of the LU form will be per-

formed (as is customary in applications of the Simplex: algorithm).

5. Householder trans foiiat ions.

If A is an m x n matrix stored by column in the modules so that

each column uses one module of the array, A may be reduced to a matrix

R by an orthogonal matrix Q, which is the product of Householder

transformations of the form I - r k Tu. Suppose Ak is produced by

k such transformations, starting with matrix A (= A0). The first step

in computing A k is to scan the last n - k + 1 columns of A kland

compute the lengths of these columns. The column of greatest length will

be selected and moved to the k thcolumn position. This selection and

movement of the column will consumne 2n + j - k ticks, where a * is the

selected column. There will then remain 2(n- k) ticks for the transfor-

mation itself. When the entries of several columns are in a single module,

the selection of the column of greatest length may be done by scanning

each column twice so that the columns may be sorted by column length,

after which the requisite column permutation and arithmetic computations

may be done. This selection procedure illustrates the utility of the flag

bits and the facilities within the processors for changing the keys over

which the words are sorted.
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Permutations of rows and columns.

Permutations on the rows and columns of matrixes to reduce fill-in or

to increase numerical stability are discussed in the literature.

It suffices to note that all standard permutations can be performed.

For example, it is often convenient to arrange the columns of a matrix so

that the column indices of the first non-zero row entries are in increasing

order. This requires a perliminary scan of the matrix, of course. Other

procedures, e.g. formation of the transitive closure of the graph repre-

sented by the non-zero entries of the matrix and determining whether this

matrix is symmetric are easily performed in this system.

7. Computations which require augmentation of the system.

As may be seen from (1) of this report, no extra time is required for

forming the transpose of a matrix when computing A Tx instead of Ax.

There are, however, computations such as the one above in determining the

symmetry of the transitive closure, or two-dimensional Fourier transforms,

for which the transpose of a matrix is either required, or at least useful.

Thus, it may be desirable to provide data paths to expedite this procedure.

If module M. is connected to those modules M. for which i - j is a

power of 2, an additional (approximately) log~n data paths will be

connected to each mocule, where n is the total number of modules in the

array. This provision makes the computation of the two-dimensional

Fourier transform on n entries in approximately 2n log~n ticks

1± feasible -- of there are at least n modules in the system.

It appears that many other computations may be made feasible, or

expedited, if more than one SSM is provided at each module. An example



of this use of storage is given on page 20 of the paper. This matter

remains to be examined, along with the improvement in system performance

to be expected from additional memory elements.

Philip N. Armstrong

December 15, 1980



On a special purpose matrix array-processor

Philip N. Armstrong
1 and David G. Cantor

2

The advent of very large scale integrated circuitry (VLSI)

has increased the interest in special purpose array-processors,

which perform certain algorithms extremely rapidly, for use

as peripheral devices on computers. To be economical, these

processors should be built from many copies of a few simple

devices, with interconnections kept to a minimum. They should

allow for parallel processing and pipelining. See, for example,

Jones and Schwartz (and the references cited therein) [5].

The purpose of this paper is to present a novel design for

a matrix array-processor. Such designs have been presented

before. See for example "Systolic arrays (for VLSI)" by H.T. Kung

and Charles E. Leiserson [7] or Chapter 8 of Mead and Conway [8].

For a general survey of parallel matrix computation schemes, see

Heller (and the references cited therein) [3].

Our proposed system is radically simpler, and correspondingly

slower, than that of Kung and Leiserson. For example to invert

a dense n by n matrix, their system would require n2 processors

and take n basic units of time, while ours has no particular

requirement on the number of processors, but with n (or more)
2

processors takes n units of time.

However, our system requires far fewer interconnections,

thus allowing its extension onto numerous VLSI chips (as and if

necessary). In addition it is able to perform all standard

matrix operations including partial pivoting during Gaussian

1. Supported in part by ONR Contract N0014-79-C-0477

2. Supported in part by NSF Grant MCS-79-03711
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elimination as well as updating of the LU form of a basis, which

is required, for example, during use of the (revised form of

the) simplex algorithm (see Orchard-Hays [9] and Tomlin [12]).

The proposed system can efficiently perform both Givens and

Householder transformations in parallel [4j, preliminary to com-

putation of eigenvalues and eigenvectors of (not necessarily

symmetric) matrices. It takes advantage of sparse matrices, even

if irregular (i.e. not necessarily band-limited matrices).

Finally, our system can efficiently perform the Fast Fourier

Transform and provides an excellent sorting mechanism for lists

of numbers. We give examples of how some of the above are per-

formed.

The major novelty of our system is a non-standard memory,

not addressable (in the usual sense) and thus not requiring the

extensive addressing logic (and associated connections) used in

ordinary computer memory, together with appropriate formulations

of the standard algorithms which work with this type of memory.

The memory provides a type of automatic list-processing.

1. The memory

The memory consists of independent modules, each a "self-

sorting" memory (SSM), as described by Armstrong and Rem in [1].

A simplified version of the memory is illustrated in figure 1.

It consists of two sequences of binary shift registers

UIU 2 ,...,UN and L],L 2 ,...,LN. All of the Ui hold u > 1

bits and all of L. hold f > 1 bits; w = u + I is called

the word length of the memory (typical values for w range

°,
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from 50 to 200). The U.i and Li are interconnected by

logical units C.i called sorters [6]. A sorter can be in

one of three states: U (undetermined), S (straight-through)

or N (normal). There are (simple) controls on the memory

to place each of its sorters into the state U at a specified

time.

The sorter has two inputs: the left one is called the low

input and the right one is called the high input. Similarly

there are two outputs: the left one is called the low output

and the right one is called the high input. In state N the

low input is connected to the low output and the high input is

connected to the high output. In state S, this is reversed,

and the low input is connected to the high output and the high

input is connected to the low output. See figure 2.

The shift registers all operate in synchronism, shifting

one bit each bit time. If a sorter is in state U and the two

inputs are the same it will remain in state U and transmit

(without delay) the (common) value of the inputs to both outputs.

If however the low input receives a 0 and the high input receives

a 1, then the sorter goes into state N, while if the low input

receives a 1 and the high input receives a 0 the sorter goes

4 into state S. Once in state N or S, the sorter rernains in

.4 that state until a control signal changes it.

The upper left input of the entire module is (similarly)

called the module's low input and the lower right input is called

the high input. Similarly the lower left and upper right outputs

are called, respectively, the low output and the high output.

.. ... . . .. . . . . . .. . . . . . .. . . . . . .
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The period of this memory is w (bit times). We assign a

start time of s. = ju (reduced modulo w) to the sorter Ci,

0 < j < N.

During normal operation, the controls put sorter C . into

state U at the beginning of bit time sj. (This is done for

all sorters, once each period. For the customary values of u

(1, w/2, or w-l), implementation is extremely simple.

The registers Uj and Lj together form a ring R1 .

Each ring R. holds w bits.3

We shall say that the sorter is stable if (1) during one

period all sorters stay in state U or go into state N;

(2) zeros are fed into the low input and ones into the high

input of the module; (3) sorter C . is set to state U at

time s .. When that is so, each ring R. contains w bits.3 3

The bit entering Cj at time sj (equivalently Cj_ at time

s. _) is called bit b0  (or boj if we wish to identify the

ring). Successive bits, proceeding counter-clockwise around

the ring, are called bits blsb2...9bw I . Thus the w bits
in ring Rj represent a binary number b0 b2 .. .bw_ ( Z b.2 wli

• w-l i=0

in decimal); b0 is the high-order (most significant) bit,

b is the next most significant bit,..., and finally bw_1

is the low order (least significant bit). Denote the word

bbl ... bwl by Bj; it is the word cycling in the 'th
Oj l_ w-,j 33

ring. If the words B. and B are equal then sorter Cj

will remain in state U. If they are not equal, then there

must be a first bit, say the k , in which they differ. Then

b,..j 1  blj for 0 < i < k-i but bk, 1- / bk,j. By our

i'j k~-1 k~j
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assumption of stability, when these bits are encountered C J

goes into state N. This implies that bk,j_ 1 = 0 and bk,j = 1.

It follows that Bj_ < Bj. Thus we see that during stable

operation, the words B satisfy B1 < B2  ... BN.

Let us see what happens if a word B0 = b0 0 b1 0 ...bw_,0

is entered into the low input, replacing the zeros customarily

entering there, with boo entering at time so. If B0 < B1

it is clear that B0 will be output immediately from the low

output. If however B0 > B, then B1 will be output immedi-

ately and B0 will be sent to C2, where it will be compared

with B2. If B0 < B2  then B0 will remain in ring R,

otherwise it will be sent to C 3 and compared to B This

will proceed until a stable situation is reached. At this time

the memory will contain numbers B! < B < ... B . Thus we

observe the basic operation of this memory, which is to insert a

number B0  into the low input and obtain from the low output

the smallest number among B0 ,B1,.. .,B I. Since this is a

"pipe-lined" memory, the basic operation can be repeated every

period, even though the memory is not stable.

Similarly if a number B N+ is entered into the high

input, the larger number among BN , BN+l will be output from

the high output, and the remaining numbers will move into

increasing order.

Note that while one can successively enter numbers from

the low input, once each period, or from the high input, once

each period, in order to switch from one input to the other, it

is necessary for the "self-sorting" memory to stabilize, and

i



-6-

this may take as many as N periods.

In order to avoid this lengthy delay, we use the slightly

more complicated memory shown in figure 3. The elements

DO,D I,...,DN _ 1 are sorters, while the elements VlV 2 ,...,VN 1

are shift registers, each holding u bits. The sorters D.

are drawn upside down (compared with the C.); thus the lower
3

left input is the low input and the upper left output is the low

output. Similarly the other input and output are the high input

and output, respectively. Like Cj, D. is put into state U

at time sj.

During stable operation, the Uj, L. and C. function

as before. Ring Rj contains word W, and W1  W2 < ... < WN.

The Vi contain ones. If a number W 0  is entered into the

low input the system behaves as before. If a number W0 is

entered into the high input, then it will travel along the path

VI,  . . 2' V . If any of the numbers in the rings RI,R 2 ,..., RN

is greater than W08 it will be compared with W0 at some stage

and replace W0. Thus (N-l)u bit times after the insertion of

W0, the largest of the numbers W0 ,WI,...,WN will emerge from

the high output (for our purposes, this delay is unimportant).

Finally we will need one more control. This will connect

to all sorters C. and D.. It will enable, for given k,

replacement of the kt h  bit of each word, as it enters the
sorter, by 0 (this will only be done for 2 < k < w, and

usually for 2 < k < 6).

Before explaining how this self-sorting memory is used,

we note that if, for purpuses of VLSI implementation, the connec-

- , n I - , .- . .
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tion from UN to LN is made external to the chip containing

the module, and the two control signals (the first control

signal puts sorter Ci and D. into state U at time sj
J J

th
the second sets the k bit of each word of the memory to 0)

are passed both in and out of the chip, self-sorting memories

can be strung together, one after another, and chip limitations

do not limit the size of the memory, nor do time delays arising

from the finite speed of pulse transmission). In addition,

there are rel ively simple modifications, which allow what is,

in essence, bit parallel operation of these memories, and which

for a given clock speed, allow a much greater memory speed. We

do not describe these here, although they might be used in an

actual implementation.

2. The array-processor

The array-processor consists of a sequence of M identical

modules as shown in figure 4. Each module consists of a pro-

cessor (P) and attached self-sorting memory holding N words.

Each SSM connects only to its processor, and its lowest ring

is an addressable register in its processor. Each processor,

except those at the end, are connected by bi-directional lines

to each of the eight adjacent processors (four on each side).

For simplicity these connections are not shown on the diagram.I In addition, there are two commoJn buses to which all processors

have access. Attached to one of these buses is one reciprocal

unit (which given x X 0, returns 1/x) and one square-root

unit (which given x > 0 returns V).The square root unit
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and reciprocal unit may be physically the same. The processors

are numbered P1lJP 2 9* ... M

The processors have limited capability. They have a few

registers for holding floating point numbers. They can add and

multiply both fixed and floating point numbers (division and

square root are not necessary), compare floating point numbers,

and perform limited bit-manipulation operations. They have a

small program-store (which can be in ROM, or in RAM which is

down-loaded from the controlling computer). It is convenient

(for the moment) to assume the processors operate in a synchronous

mode. We shall call the time necessary to perform one period of

the self-sorting module (w bit times) followel by a floating

point operation of the complexity ab,c - a :Tb c (or similar

operation) a tick. We assume that during the first part of the

tick (when the processor is communicating with its self-sorting

memory) a processor can also send or receive (up to three) words

of w bits from its adjacent processors (i.e., interprocessor

communication time is no more than one self-sorting module

period). Later we shall show that these restrictions are not

all necessary, and that the array-processor can take advantage

of faster inter-processor communication (especially when working

with sparse matrices). It is convenient to assume that the

reciprocal unit and the square-root unit also function (including

communication) in one tick. However, if this is not so, the

entire processor will function only slightly slower. For

example, in Gaussian elimination of an n by n matrix, n divi-

sions are required, and it is the extra time for these n divi-
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sions that would have to be included.

As we shall see, an arbitrary (invertible) dense n X n

matrix can be inverted in n 2ticks (assuming our array contains

at least n + 2 processors). Thus if a tick takes 10 4ls, then

a 500 by 500 dense matrix can be inverted in 2.5 seconds. We

should also note, in this regard, that the primary limitation,

on the size of matrices that can be handled, is that the total

memory capacity (of the self-sorting memories) suffices to hold

the original matrix and all intervening matrices occurring during

the computation (in general, each self-sorting memory will hold

1 or more columns of a matrix, but a column must be entirely

contained within one self-sorting memory).

3. Data manipulation

We shall assume throughout the remainder of this paper that

all data items have a leading 0, i.e. bo 0. We shall call

any word with a leading 1 (b0 = 1) a blank. To the self-

sorting memory (SSM), blanks are larger than any valid datum,

hence, during computations, each SSM will contain valid data

followed by blanks.

Note that a processor can perform the following three opera-

tions on its attached SSM.

1) it can delete the least it-2m (which will be transferredIinto a register of that processor) by inserting a blank into the
low input of the SSM;

2) it can add an item into the SSM (displacing a blank

if any are pre~sent, otherwise displacing the largest datum, which

will be lost) by inserting the item into the high input;



-10-

3) it can enter a new item into the low input; the SSM

will simultaneously write out the smallest of the valid data

items (including the new one) present.

Let us first see how the array-processor sorts a list of

L < MN numbers in 2L + N ticks. We first (simultaneously)

load all of the SSM with blanks. This will take N ticks

using step (1) above (with a slightly more elaborate SSM control,

this could be done in 1 tick).

The data items are sent one-by-one into SSM 1, using step

(2) until N items have been entered. Then it will continue

inserting items using step(3), the displaced items will be sent

by SSM 2, where they will be inserted as before, then to SSM 3,

etc., until SSM k (k< '.i) is partially filled. Then, starting

with SSM k, they will be written out, one-by-one, using step

(1). The items will then appear in ascending sorted order. If

the items to be sorted are keys ki from larger records rip

suppose Pi is a pointer to ri and form the word xi 
= (kipi)

(i.e. the pointer pi is concatenated to the key ki). As long

as the total number of bits in ki and pi is less than w,

the keys and pointers may be sorted together. If descending

order of sort is desired, processor P1 may be programmed to

take the ones complement of the x. as they enter and recomple-

4ment when they leave. Other preliminary transformations may be

necessary if the k. represent signed-magnitude or twos-complement1

numbers. Such transformations can also be performed in P1.

We now show how a single processor-SSM combination can

perform data manipulation on vectors. We describe a slightly
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simplified version of our procedure. We represent a vector

entry as follows.

0 0 1 F-1 Index (I) Value (V)

Here the leading 0 is that required of all valid data; F

denotes a one bit "flag" field; I is the subscript or index of

the given vector entry; finally V is its numerical value

(probably in floating point). Note that the flag and index are

the high order part of the word, not its value, and thus the SSM

will sort on indices, not on the value (as we shall see, in

Gaussian elimination, the pivot entry is determined by compari-

sons within the processor, not by the SSM). If V = 0, then

the word is not stored in the SSM. This last rule enables us to

take advantage of sparse vectors. In practice, I might be a

20 bit field and V an 80 bit field.

Let us suppose that an SSM contains all the (non-zero)

elements of a vector, and that we wish to read them out one-by-

one, modify them, and then replace them. We assume all the flag

bits are 0 (there is a control pulse in the SSM to set them

to 0, if necessary).

Using operation (1) we move the first element of the SSM

into the processor. After we modify it, we set its flag bit to

1 and use operation (3) to replace it, and get the next element.

5$
Since the first element is large, it will "bubble" to the top of

the SSM. We repeat this operation until we have passed through

all valid data items. The latter will be signalled, either by
ab

a count, known in advance, or by the appearance of an element

'1f
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with flag bit 1. At that point, we complete the operation by

setting all flag bits to 0. To interchange two elements, say
.th .th,

the i and the j , we simply replace the index i by the

index j in the ith element, when it appears, and replace the

index j by the index i when the jth word appears.

We note that, in a similar fashion, the single processor-

combination can perform the "perfect shuffle" of Stone [11],

which is used in the Fast Fourier Transform (and numerous other

algorithms). Recall that in order to perform the perfect shuffle,
2k

it is necessary to have n =  items, and that item j,

0 < j < n, is sent to item 2j if 2j < n and to item

2j+l- n if 2j > n (this amounts to a circular left shift by

1 of the index). The flag bit is used as before.
th

In order to perform an FFT, all of the n roots of

unity are needed, in an appropriate order. It is not hard to

see that two (since they are complex) SSM's could be used to

hold the appropriate roots of unity. Thus the array processor

could perform [K/2J - 2 simultaneous FFT's in 2kn ticks.

We note finally, that any permutation v of a vector for
'I

which T(i) is an "easily computable" function of i can be

performed in the SSM.

By using two adjacent processor-SSM's we can apply an

arbitrary permutation T to the indices of a vector. One SSM

holds words with index field i and data field T(i) (if

-r(i) = i, the word need not be stored). The vector entries

and permutations are read out, and i is replaced by T(i) in

the vector entry, the flag bits are set to 1, and the process

'1
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continues.

We note, finally, that many of the algorithms will require

more than one flag bit, and we usually will reserve three flag

bits.

4. Gaussian Elimination

The purpose of this section is to describe the algorithn

for performing Gaussian elimination, with partial pivoting, on

dense matrices, using the array-processor. While basically

very simple, the algorithm because of its non-standard order of

computation and parallel computations is somewhat difficult to

describe. Let us recall the standard Gaussian elimination for

transforming an n by n matrix A to LU form [4]. We wish

to write A = LU where L is a lower diagonal matrix with

ones on the diagonal and U is an upper diagonal matrix. We

define a sequence of matrices A (k ) = (a (k )  0 < i,j,k < n,

with A ( 0 ) = A and then successively for k = 1,2,...,n, A(k)

is defined by

( ) aj il /a (k k + 1< i < n;

(2)k) ak-l) a (k-l) a(k-i) /a (k)

i ii ik kj kk
(k-1) (k) (k-i)
ij~1 ik kj I k _i-

(k) (k-1) otherwise

Then A (n) (L- I) + U; i.e. the elements below the main
(n)

diagonal of An equal the corresponding elements of L (of

course the diagonal elements of L are 1), while the elements

*1
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on or above the main diagonal equal the corresponding elements

of U. The above algorithm somewhat rashly assumes that the

"pivot elements" a(k) 1 < k < n, are not zero (and to avoid
kk_

numerical instabilities not too "small"). We shall later drop

this assumption, but continue it for the moment.

The normal implementation of Gaussian elimination is given

by (using a self-explanatory "Pidgin" PL/1):

do k = 1 to n;

do i = k + to n;

aik a ik/akk;

end;

do i = k + 1 to n;

do j k + 1 to

, , = a. 1• - aik * kj;

end;

end;

end;

(k)It is easy to verify that the outer loop on k computes A

from A(k-i)
" th

Let us denote the i row of a matrix A = (aij) by ai

thand the j column by a The Doolittle method of

4 Gaussian elimination is obtained by noting that, in the above
aoitm (k) : (k~l) (n) (n

aaqoritm *k a*k . a n, and computing A(n)

column by column. This yields the following algorithm.

r

-1
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do k = 1 to n;

do j = 1 to k-i;

do i = j + 1 to n;

aij = a i j - aik *kj;

end;

end;

do i = k + 1 to n;

a ix = aik/a kk;

end;

end;

It is a modified version of this latter algorithm that we shall

implement. Note that the n - j computations a.. = a.. -

aik * a., of the inner loop above may be performed simultaneously

(and this is what, in essence, we shall do). The above algorithm

can then be conveniently implemented, in a parallel fashion, on

our array-processor as follows: We compute the columns success-

th (0), (0)ively. To compute the k column, the elements a0lk ,a 2k *

ank are fed in successively, one per tick, from the left.

When element a (= a l) enters P1 it is held in a special

register. One tick later it is sent to P2. During the same

tick a ( ) enters P a is brought out of SSM and

an) a() a 1) 1) is computed in P1  During the nexta2k -a2k -2a1 air "
tick the following operations are performed:

t (i) (k)
I a k moves from P to Plk2 3;(ii) (k) moves from P1  to P2, where it is held for

later use, and

(iii a (I ) = a ( ) - a (1)a ( ) is computed in P1  This
3k 3k 31 k 1s

continues through the first k -1 columns. As the elements
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ak) i < k enter P they are passed into SSMR When a(k)

aik k -- " kk

enters, it is passed into SSMk, and its reciprocal is calculated

in the reciprocal unit and saved in Pk' When the elements

a (k-), i < k < n, enter Pk the element a.n )  a ak)
ik k' ik ik

ak-l). (/a(k)) is computed and sent to SSMk Note that inaik •Not tha

the tick following computation of a(l) = a(0 ) - a(1)a(0) in
nk nk n1 1k

Pip al(0) enters P and the above sequence of computationsal,k+l I

is repeated (with the, appropriate changes) for the (k+l)st

column.

I the, ticks areI numbered so that a(0) enters C1  at

tic 1, then a ntr,-s P at tick n(k-l) + 1 and (k)
1k lk

enters PK at t-ime (n+I)(k-I) + 1. At tick n 2  (1)tik , a is

computed in PI, and at time n 2 + I we may start outputting

the first column of A) At tick n + n + 1, all entries of

A( n ) have been computed.

Let us now investigate the chanqes necessary in order to

allow partial pivoting. ANecall that this means that when com-

puin A(k) (k-I)
putin A ) from A the largest elemen t in column k

is chosen as a pivot element. Specifically, suppose that after

A(k -l) has been chosen, pk is chosen, k < Pk < n, so that

ia(k - ) I = max aj -l) I. Then a permutation Tk of 1,2,...,n
Pkk k<i<n

is chosen which fixes 1,2,...,k-l, replaces k by Pk' and

is otherwise arbitrary. Two convenient choices are rk = (k,pk)

(i.e. k and pk are interchanged) and Tk = (k,k+l,...,pk)

(i.e. pk+l replaces k, and k,k+l,...,k+Pk-i each replace

their successors). Let 5k  be the permutation matrix which, by
(k-1)

left multiplication, permutes the rows of A according to

Leo"
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the permutation rk. Then before computing A(k), A(kl) is

replaced by dkA(k -l) and computation proceeds as before. Put

Sk = 0 k0 kl'''l and T = r krkl...T If we were omniscient

and knew in advance the permutations vl, 20''nil we could

apply the above algorithm to SnA. Alternatively, still omni-

scient, we use the structure of figure 5 (which is simply a

convenient renaming of our array-processor, with the first

two processors and SSM's combined to form M 0). Using this

structure we could attempt to perform Gaussian elimination using

the following scheme. The elements of A(0 ) would enter M0

and then follow the same route as in the earlier structure.

However as the kth  column a k enters and leaves M0 , it

would be replaced by Ska k, as Ska, k passes through Pi. we
,th

would find the j column permuted by Tk; i.e., M. would

contain SkTj and thus be ready for column k, and as column

k passed by we would apply T k+l to the th column.

Unfortunately, the above method is not feasible, for we do

not know the permutation -r until all of a(k-l) is computed.
k *k

However a modified version can be used, and we proceed to describe

it.

Assume for the moment that k > 4. As above, the kth

column enters and leaves M0; (as we shall shortly see) at the

time it enters M0 , permutation Sk-3 has been determined, but

Sk- 2 and Sk_ are not yet known. So we use M0 to apply

the permutation Tk-3 to ak obtaining Sk-3a k. As before
the successive elements of S a(0)
tk-3 *k are sent successively

'~1 through PIP 2,...,Pk 3. As this occurs, rk2 , now known, is'1
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applied to these columns. The contents of SSM., 1 < k < k-3,

are at this time, as we shall arrange, S a (n), 1 < k < k-3,k-3 *j 1_ _k3

respectively. Thus they are in the same order as S k3 ak

and we may calculate S a(k - 4 ) and send it directly tok-3 *k k

(not P_3)' at the same time we may send S a(k- 3 ) from
k-3 *,k-3

(k-3)Pk-3 to Pk9 where we compute Sk 2 a 
k  and pass it

appropriately permuted into Mk. The important consideration,

easily verified by computing times, is that Trk2 is currently

available and that, currently, in P k-2 we are computing

S (k-2) and in we are computing S a (k -2)
k-2a*,k-2 ak- k-2 *,k-l'

Now the following method is employed: As we compute

R-2 *,k- we look for its pivot entry. We do this by holding

the (k-l)s t  entry as it comes by. If a larger entry, say

the 2th appears, we give what was previously entry (k-l) the

index 2 and store it, replacing the (k-l) s t  entry by the

th. We say tentatively that kl=(k-,1). Exactly the same

interchanges are performed on the entries entering SSMk-2  and

SSM Thus, when the k column is completely loaded into

SSM SMkR2 contains SR an, SSM contains
k9 -2 k- *,k-2S conk-t

kSla,,k-2) SSM k  contains S a (k -3 )  tepvtetyi
.-. k-l *,k the pivot entry is

known for column k-l and TRk 1  is known (to be sent to M0

and P,P ..., P ). We are now ready to compute S a(k -l)
12 R-3 k- *,k

This requires two processors and we use Pk-2 (which is free,

for the column that would normally go to that processor is being
sent to P+l and P S a (k-l) is computed and, as it is

and k' S-l *,k

stored into Mk, it becomes Ska *,k-l At the same time, the

pivot element and r are obtained simultaneously.
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Let us summarize the timing aspects of the above by noting

at what tick the first element of column k arrives at various

places in the array-processor.

Tick First entry Current value of column k
arrives at

n(k-l)+l M A(0)

nk+ 1 P S A ( 0 )
k-3 ,k

nk~k4 PS A (k -5 )

nk+k-4 Pk-4 k- 3 *,k

nk+k-3 P S k- 4)
k k-3 *,k

n(k+l)+k-3 PS k- 3)
k-2 k-i *,k

n(k+2)+k-i Pk S A ( k - 2 )

k-l *,k

n(k+2)+k S ( k )

Pk Sk *,k

Finally we note that the above procedure requires the

first three columns to be appropriately initialized; we omit

the description of this straight-forward procedure.

5. Sparse Matrices

We now indicate how the above methods are used for sparse

matrices. We use the following word format:

I0 F, F 1 F ro column valu
SL 13 Iw

Here the 0 is the leading zero required for valid data, Fi ,I
F2,9F 3  are flag bits. "Row" and "column" are 20 bit fields,

20_ 20_
allowing for matrices of size (2 -1) by (2 -1) and the value

field might be 84 bits for a word length of 128 bits.

I
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We will allow several columns of a matrix to be in one SSM,

but will not split a column between two SSM's. We assume the

processor has one special register for each column held in its

SSM (this can be avoided at the expense of essentially halving

the speed of the array-processor). Gaussian elimination proceeds

as before, except that as the kt h  column passes by the proces-

sors, several updates of an element may occur (i.e. computations

of the form a i j - a i j - aikakj ) for several columns may re-

side in the corresponding SSM. They will be computed consecu-

tively (for elements with the same row number will be adjacent).

[his system, while it may operate synchronously at the bit level,

should operate asynchronously at the word level. For whenever

all updates that can occur in a processor have occurred, the

entry should be immediately sent to the next processor, if that

processor is not busy. To speed up the procedure even more it

would be appropriate to have first-in, first-out buffers between

processors (these could be additional SSM's). Then a processor

could send an entry on, even if the next processor is busy. Of

thcourse when the k column is being updated, columns k-3, k-2,

k-1, k will be kept in distinct SSM's (so that the speed-up

trick described in the last section may be used). But as the

(k+l)st column comes by, the (k-3)th column will be moved to

the preceding SSM, if there is room. If that occurs each of the

columns k-2, k-l, k will be moved to the preceding SSM.

We note that many variants of the above algorithms are

possible, and much further investigation and simulation is

necessary to determine which is best.

r~
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In addition, it has been tacitly assumed that the main

computer, to which our array-processor has been attached, will

initially permute the rows and columns of the matrix to make it

close to triangular or bounded so as to minimize "fill-in".

Standard algorithms for this purpose may also be performed in our

array-processor (for example, during partial pivoting it may be

better to choose as a pivot element, not the largest, but one

which is not too small, but whose row is sparse).

Similar considerations apply to other standard algorithms

in matrix theory.
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